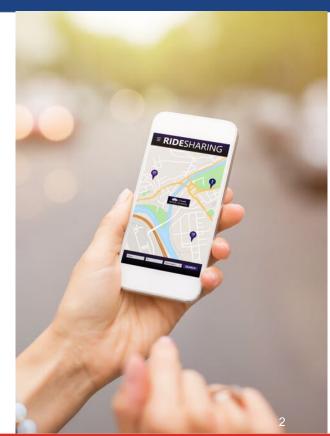


Are We There Yet?

Our Journey to Safe and Smart Mobility


FAV Summit | September 8, 2023

Welcome

Presenters and Panelists

Apurva "AD" Desai
Vice President of ITS
IntelliRoad, a division of Kyra
Solutions, Inc.

Bridging the GAP to CV

A DISCUSSION FROM THE FRONTLINE

2023 FAV Summit – Tampa presented by IntelliRoad – a division of Kyra Solutions

AD Desai Vice President - ITS

TOPICS WE WILL COVER

- Safety for All
- Redefining Connected
- Florida's Turnpike Enterprise -V2X-CV Safety Program
- Use Case Video Clips
- Technology-Agnostic Solution

SAFETY for ALL

A CALL TO ACTION

For a second consecutive year, preliminary estimates from the National Safety Council (NSC) indicate that in a single year's time – more than 46,000 people lost their lives in traffic crashes.

Compared to pre-pandemic 2019, the mileage death rate in 2022 increased nearly 22%.

AAA study – 95% of motorist responded positively to DMS/VMS and VSL displays

Source: National Safety Council, March 2023

Redefining Connected...

A planning concept that combines transportation and consumer technology.

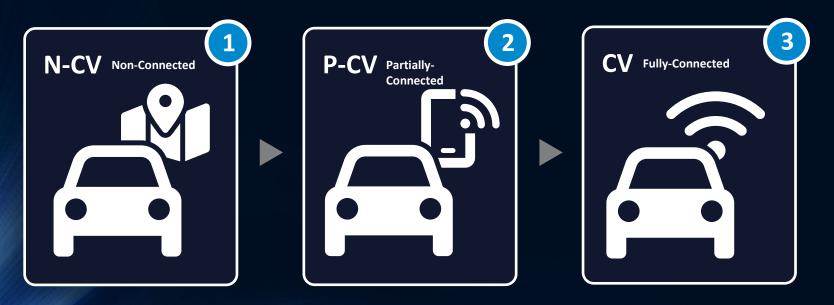
- Consumer Tech: Automobile, e-bike, e-scooter, wearables, smart phones, etc.
- ➤ As agencies include consumer tech to the traditional transportation tech planning, they are redefining connected.
- As a result more data becomes available to continually improve safety and mobility services.

 Confidential Intelligence, A Division of Kyra Solutions

Partnership with Florida's Turnpike Enterprise (FTE)

A Commitment to Safety

FTE's V2X – CV Safety Program (Initiate & Sustain)


- Service Equity Safety for All
- Meaningful and Time Sensitive Safety Messaging Audio First
- Use of technology to identify Unsafe Roadway Conditions

A DISCUSSION FROM THE FRONTLINE

CV Message Delivery Options for A Sustainable Data-Enabled Con-Ops

FTE's V2X – CV Safety Program • "Safety for All" • 1 Solution with 3 Message Delivery Options – Audio First

A DISCUSSION FROM THE FRONTLINE

CV Message Delivery Options for A Sustainable Data-Enabled Con-Ops

FTE's V2X – CV Safety Program • "Safety for All" • 1 Solution with 3 Message Delivery Options – Audio First

N-CV Non-Connected

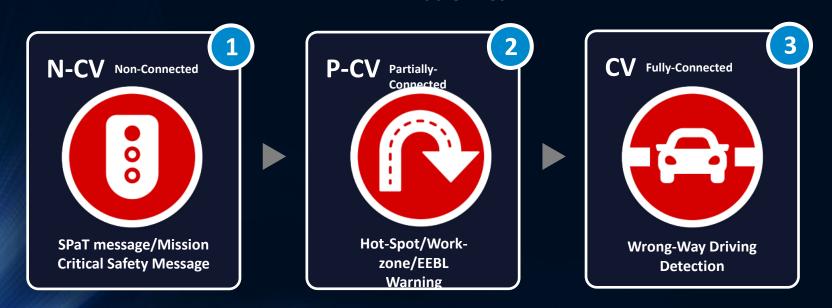
- In-car displays, mobile smart phones
- Static and dynamic geofencing technology
- Technology-agnostic solution

P-CV Partially-Connected

- Smart phone as an OBU
- Heading, location, and speed parameters mobile device
- RSUs plus optional edge computing
- Technology-agnostic solution

CV Fully-Connected

- Connected Vehicle's (OEM's) on-board units (OBUs)
- Roadside units (RSUs) plus edge computing
- Technology-agnostic solution



A DISCUSSION FROM THE FRONTLINE

CV Message Delivery Options for A Sustainable Data-Enabled Con-Ops

FTE's V2X – CV Safety Program • "Safety for All" • 1 Solution with 3 Message Delivery Options – Audio First

FULLY-CONNECTED VEHICLES

Use Case: Wrong-way Driving

A DISCUSSION FROM THE FRONTLINE

The Request...

A technology-agnostic software solution for safety and compliance, providing messaging and information services for traffic management and motorists

- Messaging Equity for all motorists N-CV, P-CV, and CV
- Compliance for congestion pricing (real-time communication of pricing changes)
- Device health monitoring (RSU's, Sensors, Cameras, Signs ...etc.)
- Data collection, fusion, and correlation for new use case discovery
- Integration with the existing agency app, 511, Waze, and fleet providers
- Public Service and Safety Messaging for Motorists and Traffic Management professionals

SAFETY for ALL

A CALL TO ACTION

As you can see from the work done at FTE, we all have an opportunity to bridge the GAP to CV, NOW!

Thank You

To learn more about IntelliConnect Solutions check out our website or email me directly.

A DIVISION OF Solutions • https://intelliroad.io

AD Desai Vice President - ITS AD@intelliroad.io

Michael Hunter
Professor
Georgia Institute of Technology

A Few Thoughts on Human Driver & AV Interaction

STRIDE

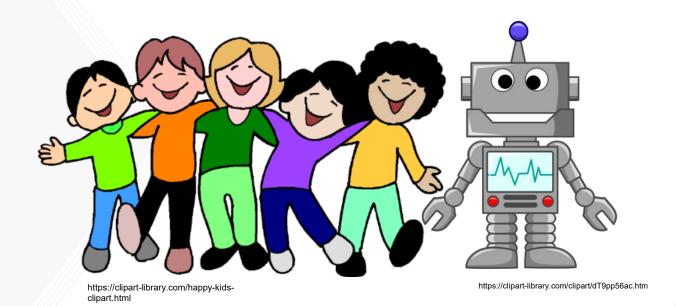
Southeastern Transportation Research, Innovation,

Development and Education Center

Michael Hunter

9/8/2023

https://clipart-library.com/data_images/190035.png



The two most common assumptions to model AV driving behaviors are cooperative responses to other road users and conservative driving behavior. Generally human driven vehicles are assumed to be cooperative or treat AV as a human driven vehicle.

Yes - No - Maybe?

Human - AV Merging

How aggressive would you be?

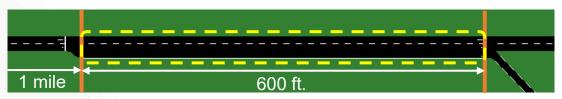
Photo credit: Chris Toth

Initial Efforts – Off-Ramp

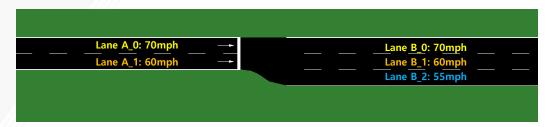
A V

- Autonomous Vehicle
- Cooperative driving behavior

- Human-Driven Vehicle
- Same cooperative driving behaviors as AV
- Are not targeted by AHDV

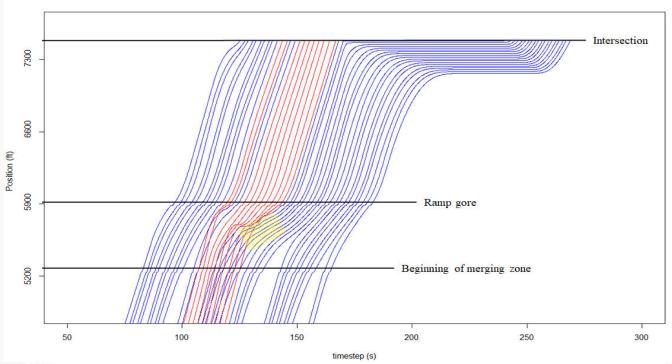


- Aggressive Human-Driven Vehicle
- Higher desired speed lane
- Aggressive behaviors towards AV
- When AV is unavailable, non-aggressive merge performed



Initial Efforts – Off-Ramp

Merging Zone Layout – Highlighted in yellow


Lane Speed

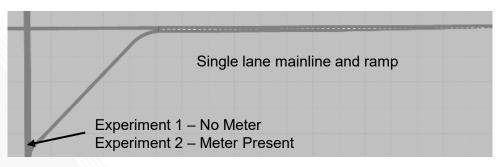
Initial Efforts – Time-space Diagrams

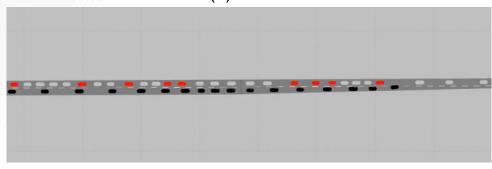
Trajectory Plot - Exit Vehicles in Aggressive Merge (Low Congestion)



Red – AHDVs, Blue – Traffic on Deceleration Lane

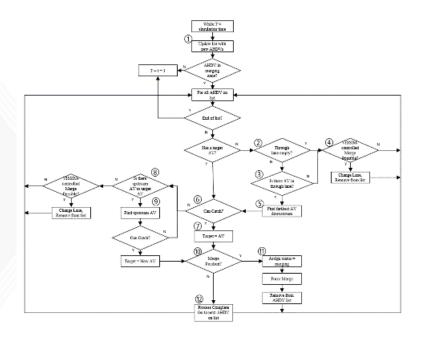
Initial Efforts – Time-space Diagrams (Max.)





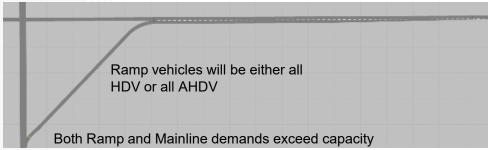
On-ramp Scenario – Capacity Impacts

(a)


(b)

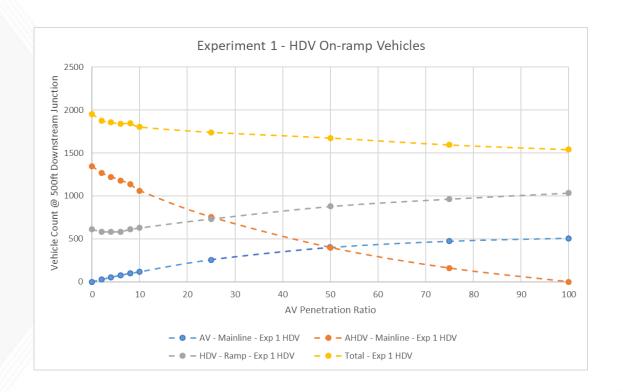
On-ramp Test-Bed: (a) Network and (b) Fully loaded demand

Aggressive Vehicle Merging Behavior

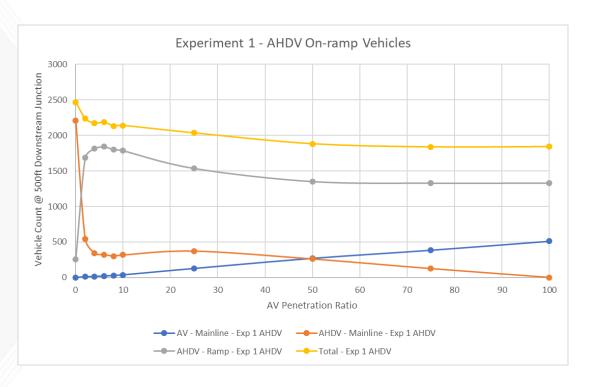

AHDV will seek to maximize advancement. Merge in front of furthest downstream AV without concern for available gap.

Experiment

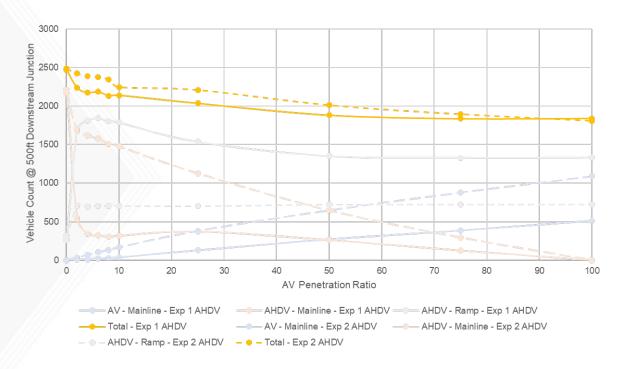
Mainline vehicles will be a mix of AHDV and AV.



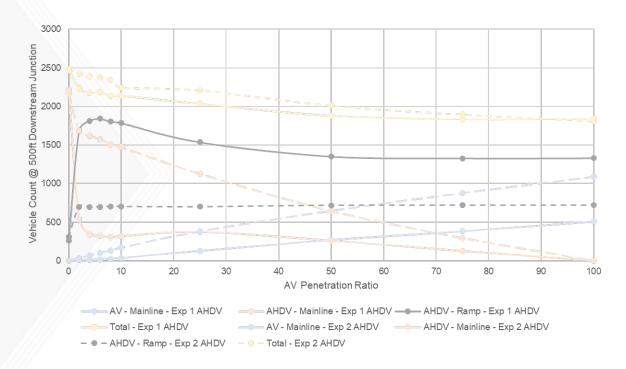
Volume data collected 500 ft downstream end of merge


Sample Results

Sample Results


Sample Results Number Vehicles that Merge in from of AV

	On-Ramp (veh/hr)	
AV Ratio (%)	AHDV	HDV
0	NA	NA
2	153.63	21.12
4	128.36	11.06
6	84.22	7.42
8	62.61	6.22
10	48	5.32
25	12.13	2.86
50	5.01	2.19
75	3.46	2.04
100	2.61	2.04


Sample Results with Ramp Meter

Sample Results with Ramp Meter

Thoughts

- Study of future impacts of AVs should include consideration of potential changes in human driver behaviors
- Drivers may take advantage of AVs
- Aggressive driving has potential to significantly impact traffic flow, capacities, and travel times
- Impacts will not be experienced equally across vehicle types or locations
- May need to consider mitigations to balance impacts
- Modeling "outside-the-box" may require use of additional analytic tools
- Transportation System and Operations Managers roles will change

Please feel free to reach out to me with any comment or questions at:

Michael.Hunter@ce.gatech.edu

Sgt. Robert DooleyUnmanned Aerial Systems Coordinator
Florida Highway Patrol

UNMANNED TECHNOLOGY FOR PUBLIC SAFETY

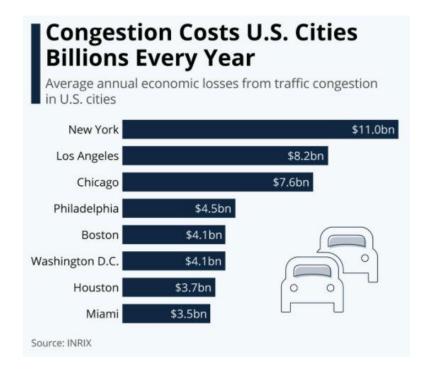
SERGEANT ROBERT DOOLEY ROBERTDOOLEY@FLHSMV.GOV

FHP Statewide UAV Coordinator

National FAA Representative

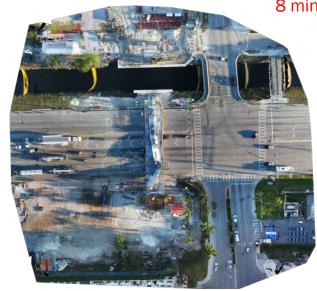
Law Enforcement Lead for the Florida Group

Aviation Committee


Director of Public Safety

IMPACT OF CLOSED ROADS AND CONGESTION ACROSS THE U.S.A.

TRAFFIC CRASHES AND FATALITIES

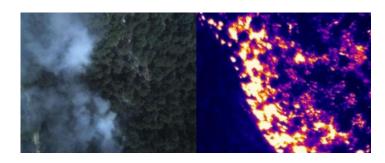

WORKING TOWARDS THE FUTURE

FIU Bridge Collapse

Using Conventional Measuring Equipment: Took 7 FHP Traffic Homicide Investigators 3 whole days To map with a Total Station 1 Trooper Using UAV mapping Technology:

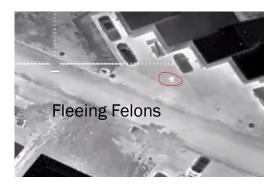
8 minutes 04 seconds

DAMAGE ASSESSMENT TO GET ROADS OPEN SOONER



HOW PUBLIC SAFETY IS USING UAV TECHNOLOGY TO SAVE LIVES AND PROTECT OUR COMMUNITIES.

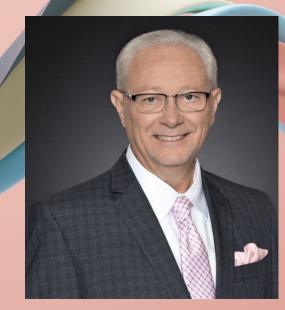
FIRE



HAZMAT

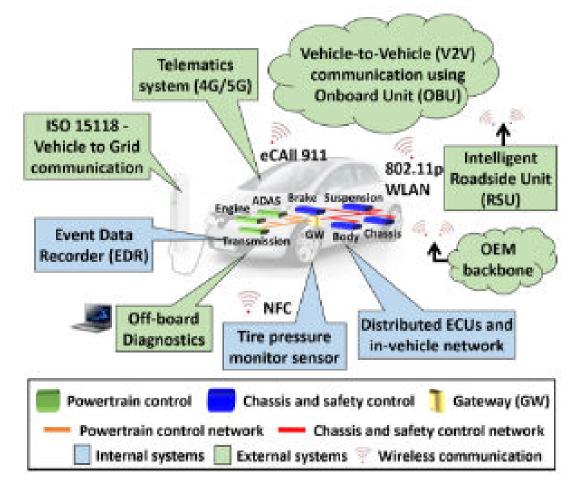
LAW ENFORCEMENT SIDE

USING UNMANNED TECHNOLOGY AS A FIRST RESPONDER



Steven JohnsonSr. Control Systems Cybersecurity Specialist
HDR

Are we there yet? Our journey to safe and smart mobility.


Automated, Connected, Electric and Shared (ACES) Vehicles And the Expanded Cybersecurity Threat Surface

Steve Johnson, MSc, CISSP, CVF

HDR, Sr. Control Systems Cybersecurity Specialist

Traditional IT-based Cybersecurity Tools Like Firewalls and Rule-based IDS, Don't Apply Well to ACES.

Roadmap for Cybersecurity in Autonomous Vehicles

Vipin Kumar Kukkala, Sooryaa Vignesh Thiruloga, and Sudeep Pasricha Colorado State University

Summary of Al-based IDS Examined in the CSU Study

System Level	Work	Technique
In-vehicle Network	GIDS	GAN based IDS using CAN images
	INDRA	GRU based recurrent autoencoder; static threshold-based attack detection
	LATTE	LSTM based encoder-decoder with self-attention; OCSVM based attack detection
	TENET	Temporal CNN with neural attention; DT based classifier for attack detection
VANET	RACCON	Explores five different machine learning techniques; static threshold to detect V2V attacks
	DD-IDS	CNNs to detect attacks aimed at RSUs
	CS-IDS	DBN for data reduction; DT classifier to detect attacks in received cloud service requests
	AED-ITS	LSTM based autoencoder; static threshold to detect V2V and V2I attacks

Key Elements in the Cybersecurity Roadmap for AV - CSU Study

Roadmap Elements	Components
	Security requirements
Cybersecurity-aware design practices	Multi-layered security
	Zero trust security
	HSMs and TPMs
Secure hardware and software stack	SDL for automotive software
	SOTA and FOTA updates
	ISO/SAE 21434
New security and AI standards and regulations	UNECE WP. 29
- Countries	AI regulations
	Vulnerability assessment
Advanced threat intelligence	Penetration testing
	Auto ISAC
	Data protection and privacy
Onen shellenges	Tamper-proof Al
Open challenges	Securing automotive IC supply chain Adopting emerging technologies

High-Priority Impediments to AV Advancement

- According to USDOT:
 - "Improving access to work zone data is one of the top needs identified through the U.S. DOT's <u>Data for Automated Vehicle</u> <u>Integration (DAVI)</u> initiative."

From the DAVI 4.0 Guiding Principles

Promote proactive, data-driven safety, cybersecurity, and privacy-protection practices.

2 Act as a facilitator to inspire and enable voluntary data exchanges.

Start small to demonstrate value and scale what works toward a bigger vision.

Coordinate across modes to reduce costs, reduce industry burden, and accelerate action.

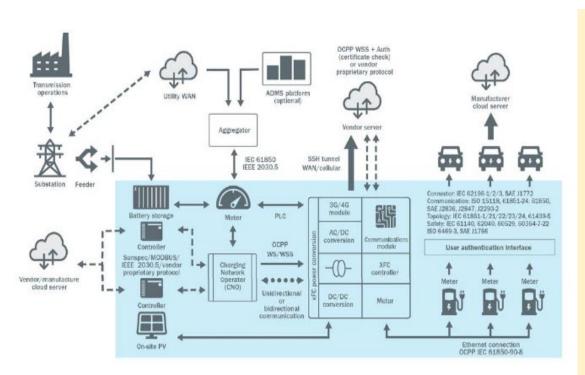
Florida is a Leader in Preparing for AV Proliferation

FDOT's V2X Data Exchange Platform

- Data Generators
 - Collects V2X Data from multiple generators and stores it in a data lake for both real-time applications and research.
 - Generators/Collectors include FDOT
 District CV architecture, Ford Motor
 Company, and 3rd Party service providers.
 - WZDx streams include real-time work zone info from smart work zone implementations and ties to the GIS permitting system

- Data Consumers
 - ADAS Systems via service providers
 - Mapping and Traveler Information Services
 - Here, WAZE, Google, Bing, etc

Info for ADAS Guidance and;


Strong Need for

=

Potential Privacy Data

Cybersecurity

Cybersecurity for Electric Vehicles, A Complex Threat Surface

Sanghvi, Anuj and Tony Markel. 2021. Cybersecurity for Electric Vehicle Fast-Charging Infrastructure:

Preprint. Golden, CO: National Renewable Energy Laboratory. NREL/CP-5R00-75236. https://www.nrel.gov/docs/fy21osti/75236.pdf.

End-to-End Considerations

- Vehicle to EVSE Threats
 - Theft of Service
 - Disruption of Service
 - Damage to Equipment
- EVSE to vehicle Threats
 - Breach of PII
 - Breach of Financial Data
 - Damage to Vehicle
- Threats to the Power Grid
 - Extreme Fast Charging (XFC) necessitates connection from the EVSE to the power grid
 - 2-Way Connection to the power grid opens vulnerability for the grid
 - Open and equal access requirements provide a huge point of access for sophisticated actors to weaponize a vehicle to disrupt or damage the power grid.

Closing (Random) Thoughts

Uncertainty (Immature Standards) Inhibits Investment \$\$\$ as witnessed by the FCC DSRC Impact on CV Advancement

WORKFORCE DEVELOPMENT / SHORTAGES ARE IMPACTING AVAILABILITY OF CERTIFIED CYBERSECURITY STAFF

NEVI Program Required States to Include a Cybersecurity Section in Their Application for Grant Funding..... But the Final Rule Doesn't Give The States Any Specifics on a Cyber Plan Requirement for Sub-recipients and no Teeth to Require Any Standards

AV Technology and Applications Don't Scale as Well as Most, So Individual Use Cases may "Not Fit the Mold" in Terms of Technology or Cybersecurity.

Greer Johnson Gillis

Senior Vice President – Chief Infrastructure and Development Officer

Jacksonville Transportation Authority

Bay Street Innovation Corridor Vision2Reality Team

January 2022 Phase I Start August 2022 Phase IA 30% Design March 2023 Phase IB 60% Design June 2023 Phase II Start June 2025 Phase II Finish Early 2025 Phase III – AV Operations

Regulatory & Local Issues

